
UCRL-PROC-233317

Implict Monte Carlo Radiation
Transport Simulations of Four
Test Problems

N.A. Gentile

August 3, 2007

Computational Methods in Transport
Lake Tahoe, CA, United States
September 9, 2006 through September 14, 2006



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Implicit Monte Carlo Radiation Transport

Simulations of Four Test Problems

N. A. Gentile

University of California
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, California 94550
gentile1@llnl.gov ⋆

Summary. Radiation transport codes, like almost all codes, are difficult to develop
and debug. It is helpful to have small, easy to run test problems with known answers
to use in development and debugging. It is also prudent to re-run test problems peri-
odically during development to ensure that previous code capabilities have not been
lost. We describe four radiation transport test problems with analytic or approxi-
mate analytic answers. These test problems are suitable for use in debugging and
testing radiation transport codes. We also give results of simulations of these test
problems performed with an Implicit Monte Carlo photonics code.

1 The units used for the simulations described in this

work

We describe test problems used in the development and debugging of an Implicit
Monte Carlo (IMC) radiation transport package used in the KULL [GKR98] and
ALEGRA [BM04] inertial confinement fusion codes. (Details of the IMC algorithm
can be found in [FC71].) The test problems were run using cgs units, with temper-
ature in keV.

In these units:
- the speed of light c = 2.9979 × 1010 cm/s
- Boltzmann’s constant k = 1.6022 × 10−8 erg/keV
- Planck’s constant h = 6.6262 × 10−27 erg-s
- The radiation constant (the a in aT 4) a = 1.3720 × 1014 erg/(cm3 − keV4)
- The Stefan-Boltzmann constant σSB = ac/4 = 1.0283 × 1024 erg/(cm2 − s −

keV4).

⋆ This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.
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2 A gray infinite medium problem with a matter energy

source allowing an analytic answer

Here we describe a test problem with no spatial dependence. A source of energy
which heats the matter, constant in space and time, acts on a medium with a
constant opacity and an equation of state specified so as to linearize the coupled
radiation and matter energy equations. The linearized equations have an analytic
solution for the matter and radiation energy density. An IMC simulation is compared
to the analytic answer.

The time-dependent transport equation for gray photons in the absence of scat-
tering in an infinite medium is [P73]

1

c

∂I

∂t
= −σI +

cσaT 4
m

4π
, (1)

where σ is the absorption cross section in inverse length units and Tm is the mat-
ter temperature. The transport equation is coupled to the material energy balance
equation [P73]

∂em

∂t
= σ

∫

IdΩ − cσaT 4 +
ρ

4π

dǫ

dt
. (2)

Here, em is the matter energy density in units of energy per volume, ǫ is the specific
energy in units of energy per mass, ρ is the mass density, and cv is the heat capacity
in units of energy per mass per temperature. The matter energy source is specified
as the time rate of change of specific energy, in units of energy per mass per time.

In this section, we will use the following equation of state (EOS) relating em and
Tm:

em =
α

4
T 4, (3)

where α is a constant. This EOS has cv = αT 3
m/ρ.

The radiation energy density is defined as

er =
1

c

∫

IdΩ. (4)

If we integrate Eqs. 1 and 2 over Ω, and employ the EOS described in Eq. 3 and the
definition of energy density Eq. 4, we get the following equations for the radiation
energy density and matter energy density:

∂er

∂t
= −cσer + cσ

4a

α
em (5)

∂em

∂t
= cσer − cσ

4a

α
em + ρ

dǫ

dt
. (6)

With constant ρ and σ, these coupled ordinary differential equations are linear. The
solution can be found in, for example, [BD77]. It is expressed most conveniently in
terms of the following definitions:

τ ≡ cσt

β ≡ 4a

α
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λ ≡ −(1 + β)

etotal(t) ≡ er(t) + em(t)

= er(0) + em(0) + ρ
dǫ

dt

K0 ≡ −
[

βρ

cσλ2

dǫ

dt
+

βetotal(0)

λ

]

Kλ ≡ er(0) − K0. (7)

In terms of these definitions, we get:

er(τ ) = K0 − β

cσλ
ρ
dǫ

dt
τ + Kλeλτ (8)

em(τ ) = etotal(τ ) − er(τ ) = etotal(0) + ρ
dǫ

dt

τ

cσ
. (9)

The IMC simulation of this test problem used the following parameters:
- α = 4.0a = 5.4881 × 1014 erg/(cm3 − keV4)
- σ = 1.0 cm−1

- dǫ/dt = 1.0 × 1024 erg/(g-s)
- Tm(0) = 0.1 keV.
The mesh was a unit cube with sides of 1 cm and reflecting boundary conditions

on all 6 faces. The simulation used ∆t = 1.0 × 10−12 s, which is the equivalent of
∆τ = 2.9979 × 10−2. The simulation was run for 1000 time steps with a constant
∆t, to a time of 1.0 × 10−9 s (τ = 29.979).

The results of the IMC simulation compared to the analytic answer are shown
in Fig. 1. The IMC simulation used 104 particles and took approximately 1 minute
on a Pentium 4 processor. The radiation and matter temperature are derived from
the analytic expressions for the matter energy density given by Eqs. 8 and 9: Tm =
4
√

4em/α and Tr = 4
√

er/a. The IMC results for both Tr and Tm match the analytic
results very well.

3 A cube with a face source allowing an approximate

analytic answer

A problem similar to the preceding one can be obtained by replacing the matter
energy source with a constant temperature source on one face. (The other 5 faces
remain reflecting boundaries.) This problem is no longer an infinite medium problem.
However, if we ignore the spatial variation in matter and radiation energy density in
the cube, it can be approximated as an infinite medium problem. This assumption
is justified if the light travel time across the cube is short compared to the time scale
on which the matter and radiation energy densities are changing. In that case, Tm

and Tr can reach an approximately constant value across the cube.
The radiation energy input per unit area from a temperature face source with

temperature Ts is σSBT 4
s . If we assume that the absorption opacity σ is large enough

that most source photons are absorbed before being reflected out of the cube, then
we can approximate the energy leaving the problem through the source face per unit
area as σSBT 4

m.
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Fig. 1. The IMC results for the linearized infinite medium test problem and the
analytic answer for the matter and radiation temperature, derived from the energy
density given by Eqs. 8 and 9. Temperature is plotted vs time. The temperature is
in units of keV and the time is in units of seconds.

With these assumptions, Eqs. 5 and 6 become

∂er

∂t
= −cσer + cσ

4a

α
em +

1

4

ac

L
[T 4

s − em/(α/4)] (10)

∂em

∂t
= cσer − cσ

4a

α
em. (11)

Here L is the length of the cube.
These coupled linear ODEs can be solved by the techniques found in, for example,

[BD77]. In order to cast the solution into a relatively easily useable form, we need
to make several definitions. We start by noting that the asymptotic solution as
t → ∞ on physical grounds must satisfy Tm = Tr = Ts. Then we make the following
definitions:

êr(t) ≡ er(t)

er(t → ∞)
=

er(t)

aT 4
s

êm(t) ≡ em(t)

em(t → ∞)
=

em(t)

α/4T 4
s

τ ≡ cσt

β ≡ 4a

α

λ± ≡ 1

2

[

−(1 + β) ±

√

(1 + β)2 − β

σL
.

]

(12)
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(Note that λ is real if σL >> β. This is consistent with the assumption that σ was
large enough that most of the entering source photons are absorbed.)

Using these definitions, the solutions are

êr(τ ) = 1 + Cr+eλ+τ + Cr−eλ
−

τ

êm(τ ) = 1 + Cm+eλ+τ + Cm−eλ
−

τ (13)

with

Cm± ≡ Cr±

1 + λ±/β

Cr+ ≡ êr(0) − 1 − Cr−

Cr− ≡
êm(0) − 1 − êr(0)−1

1+λ+/β

1
1+λ

−
/β

− 1
1+λ+/β

. (14)

Results of the IMC simulation are plotted in Fig. 2. The mesh used was a unit
cube with a temperature face source on z = 0 and reflecting boundaries on the
other faces. The simulation used ∆t = 1.0 × 10−12 s, which is the equivalent of
∆τ = 2.9979 × 10−2. The simulation was run for 1000 time steps with a constant
∆t, to a time of 1.0 × 10−9 s (τ = 29.979). The simulation used 104 particles and
took approximately 1 minute on a Pentium 4 processor. The matter temperature
calculated by IMC agrees reasonably well with Eq. 13 at all times. The radiation
temperature from the IMC simulation is lower than that derived from Eq. 13 at
early times, but begins to agree reasonably well after about t = 2.0 × 10−11 s.

4 Graziani’s spherical multigroup prompt spectrum test

problem

Graziani [G07] has developed an analytic solution for a time-dependent multigroup
radiation transport test problem in spherical geometry. The test consists of a sphere,
held at a fixed temperature Ts, embedded in an infinite medium, the temperature of
which is held fixed at Tc. The embedded sphere begins radiating into the surrounding
medium at t = 0. The medium has a multigroup opacity, which is constant in time
because the temperature is held fixed. As radiation from the embedded sphere passes
through the surrounding medium, groups with different opacities are absorbed in
varying amounts. The radiation energy density at a given point in the medium some
distance from the sphere at time t > 0 is the sum of 2 contributions: a Planckian at
Tc from the local material, and an attenuated Planckian at Ts from the part of the
sphere at a distance less than ct from the given point. This is illustrated in Fig. 3.

Graziani has constructed an analytic expression for the radiation energy density
in each group at a given point in the medium as a function of time. He refers to
this as the prompt spectrum because it is the correct expression for the radiation
energy density at times that are short compared to the time scale for the medium
to change temperature. Graziani has derived analytic expressions for both diffusion
and transport. In this paper, we will discuss only the transport solution.

Here we give the analytic expression for the prompt spectrum at a fiducial point r
outside the embedded sphere of radius R at time t [G07]. The multigroup absorption
opacity is denoted by σν to indicate that it is a function of the frequency group.
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Fig. 2. The IMC results for the linearized face source test problem and the ap-
proximate analytic answer for the matter and radiation temperature, derived from
the energy density given by Eqs. 13 and 14. Temperature is plotted vs time. The
temperature is in units of keV and the time is in units of seconds.

er(r, t, ν) = Bν(Tc) + [Bν(Ts) − Bν(Tc)]Fν(r, t) (15)

In this expression, er is the radiation energy density, and Bν(T ) is the Planck func-
tion,

Bν(T ) =
2hν3/c2

exp(hν/kT )− 1
. (16)

Fν(r, t) is given by
Fν(r, t) = 0 (17)

for ct < r − R,

Fν(r, t) =
R

4r

{[

1 +
r

R
− 1

Rσν

]

e−σν(r−R)

+

[

1

Rσν
− R

ct

(

r2

R2
− 1

)]

e−σνct

− Rσν

(

R2

R2
− 1

)

[E1(σν(r − R)) − E1(σνct)]

}

(18)

for r − R < ct <
√

r2 − R2, and

Fν(r, t) =
R

4r

{[

1 +
r

R
− 1

Rσν

]

e−σν(r−R)
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Fig. 3. The geometry of the Graziani spherical prompt spectrum problem. An
inner sphere of radius R is embedded in an infinite medium. The temperature of the
embedded sphere is held fixed at Ts. The temperature of the medium outside the
sphere is held at Tc. Photons from the embedded sphere begin to radiate into the
medium at t = 0. The radiation energy density at the fiducial point at radius r is
the sum of a Planckian at Tc and a time-dependent contribution from the fraction
of photons from the source (a Planckian at Ts) that make it out to radius r without
being absorbed.

+

[

1

Rσν
−

√

r2

R2
− 1

]

e−σν

√
r2−R2

− Rσν

(

R2

R2
− 1

)

[

E1(σν(r − R)) − E1(σν

√

r2 − R2)
]

}

(19)

for
√

r2 − R2 < ct < ∞.
In these expressions for F , E1 is the exponential integral:

E1 =

∫

∞

1

ext

t
dt =

∫

∞

x

e−u

u
du. (20)

See [CTh68] for a rational function approximation, and [PTVF02] for a series ap-
proximation.

Details of the IMC simulation follow. The embedded sphere radius R was taken
to be 0.02 cm. The solution is calculated for a fiducial point at radius r = 0.04
cm. The Ts = 0.3 keV and Tc = 0.03 keV. The density of the material is 0.0916
g/cm3 and is held fixed throughout the simulation. The heat capacity was set to
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1050 erg/(g-keV). This caused the material temperature to remain constant. Since
the density and temperature of the material do not change, the opacity is constant
also, and only one value of the opacity for each group is needed for the simulation.
(The values given in column 5 in Table 1 can be employed in simulations in order
to compare to the analytic answer given in column 4.) The IMC simulation used a
tabular opacity calculated for plastic in which some hydrogen atoms were replaced
by bromine. This material is frequently used in ICF simulations. Fifty groups were
used. The group boundaries were spaced logarithmically between 3.0×10−3 keV and
30.0 keV. The opacity of the material at T = 0.03 keV and a density of ρ = 0.0916
g/cm3 is shown in Fig. 4.

Fig. 4. The opacity of brominated plastic used in the Graziani prompt spectrum
simulation as a function of frequency. The opacity is in units of 1/cm and the
frequency is in units of keV.

The problem was run to a time of 1.4× 10−12 s using a time step of ∆t = 10−13

s. (Because the radiation energy density in the IMC algorithm is centered at the
half time steps, the answer generated by the IMC simulation corresponds to a time
of 1.35 × 10−12 s.)

The analytic solution of this problem is spherical. However, it is not necessary
to run a whole sphere, or run the problem in spherical coordinates. It is also not
necessary to simulate the inner sphere. It can be replaced by a face temperature
source with a temperature of Ts. The outer boundary of the problem does not have
to extend very far past the fiducial point. The outer boundary should have a face
temperature source with a temperature of Tc imposed on it to avoid edge effects.
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The IMC simulation was run in Cartesian coordinates on a 3D grid of 11
hexagons. These were stacked in the z direction. The first zone had the inner face
at z = 0.02 cm, the radius of the inner sphere. The center of the 10th zone is the
fiducial point location at z = 0.04 cm. This requires that 9.5∆z = 0.02 cm; thus
∆z = 2.10526316 × 10−3 cm. The x and y coordinates of the nodes of the zone were
on lines radiating from z = 0 at a 10 degree angle. Reflecting boundary conditions
are imposed on the faces that are not in the x-y plane. This mesh is pictured in
Fig. 5.

Fig. 5. The mesh used in the IMC simulation of the spherical Graziani prompt
spectrum problem. The mesh has eleven zones in the z direction. The innermost
zone is at z = 0.02 cm and the outermost is at z = 0.043157895 cm, with ∆z =
2.10526316 × 10−3 cm = 0.02/9.5 cm. The center of the 10th zone is the fiducial
point location at z = 0.04 cm.

The results of the simulation, the analytic answer, and the opacity are given for
each group in Table 1.

The results of the IMC simulation, and the analytic answer, are shown in Fig. 6.
(This is a plot of column 3 and column 4 vs. column 2 of Table 1.) This plot shows the
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Table 1. Results of the IMC simulation of the Graziani spherical prompt spectrum
problem. er is the result of an IMC simulation, and analytic er results from Eqs. 15
and 19, with r = 0.04 cm, t = 1.35×10−12 s, and σν as given in column 5. The value
of ν for each group is the rms value of the group bounds, which were logarithmically
distributed between 3.0 × 10−3 keV and 30.0 keV. The energy density is in units of
erg/(cm3 − keV) and the opacity is in units of 1/cm.

group ν er analytic er σν

0 3.28943e-03 3.60690e+06 6.56128e+06 9.16000e+04
1 3.95477e-03 6.06118e+06 9.37744e+06 9.06781e+04
2 4.75468e-03 1.12608e+07 1.33706e+07 6.08939e+04
3 5.71638e-03 9.30579e+06 1.90091e+07 4.08607e+04
4 6.87260e-03 3.25408e+07 2.69304e+07 2.72149e+04
5 8.26269e-03 3.50625e+07 3.79893e+07 1.86425e+04
6 9.93393e-03 6.14524e+07 5.33093e+07 1.24389e+04
7 1.19432e-02 7.57451e+07 7.43291e+07 8.19288e+03
8 1.43589e-02 1.15741e+08 1.02827e+08 5.79710e+03
9 1.72632e-02 2.20469e+08 1.40887e+08 5.14390e+03
10 2.07549e-02 1.95919e+08 1.90765e+08 5.20350e+03
11 2.49529e-02 2.11776e+08 2.54559e+08 8.69569e+03
12 3.00000e-02 3.48662e+08 3.33604e+08 6.67314e+03
13 3.60679e-02 3.96097e+08 4.27461e+08 4.15912e+03
14 4.33632e-02 4.44384e+08 5.32466e+08 2.62038e+03
15 5.21340e-02 6.73583e+08 6.40012e+08 1.64328e+03
16 6.26789e-02 6.76189e+08 7.35205e+08 1.01613e+03
17 7.53566e-02 7.34447e+08 7.97303e+08 6.19069e+02
18 9.05986e-02 6.17024e+08 8.04394e+08 3.75748e+02
19 1.08923e-01 7.15130e+08 7.43877e+08 2.97349e+02
20 1.30955e-01 5.83979e+08 6.06784e+08 8.21172e+02
21 1.57442e-01 4.41725e+08 4.32675e+08 4.01655e+03
22 1.89287e-01 2.62729e+08 2.59951e+08 4.54828e+03
23 2.27573e-01 1.46260e+08 1.26955e+08 3.50487e+03
24 2.73603e-01 3.47654e+07 4.83345e+07 3.02359e+03
25 3.28943e-01 1.30942e+07 1.36588e+07 4.34203e+03
26 3.95477e-01 3.79204e+06 2.70428e+06 2.98594e+03
27 4.75468e-01 8.89654e+05 3.50392e+05 1.55364e+03
28 5.71638e-01 0.00000e+00 2.74523e-12 9.42213e+02
29 6.87260e-01 0.00000e+00 1.31590e+05 5.76390e+02
30 8.26269e-01 1.40974e+07 1.70905e+07 3.52954e+02
31 9.93393e-01 4.24349e+08 3.95663e+08 2.09882e+02
32 1.19432e+00 2.30338e+09 2.30389e+09 1.26546e+02
33 1.43589e+00 5.60175e+09 5.46696e+09 7.80087e+01
34 1.72632e+00 2.15155e+09 2.16292e+09 9.97421e+01
35 2.07549e+00 3.88801e+08 3.78948e+08 1.48848e+02
36 2.49529e+00 7.93594e+08 7.67169e+08 8.22907e+01
37 3.00000e+00 5.99171e+08 5.58890e+08 4.86915e+01
38 3.60679e+00 2.18511e+08 2.12224e+08 2.91258e+01
39 4.33632e+00 5.48765e+07 4.60720e+07 1.68133e+01
40 5.21340e+00 5.30714e+06 5.53396e+06 9.92194e+00
41 6.26789e+00 1.19953e+06 3.63829e+05 5.18722e+00
42 7.53566e+00 0.00000e+00 1.18769e+04 2.24699e+00
43 9.05986e+00 0.00000e+00 1.68621e+02 1.29604e+00
44 1.08923e+01 0.00000e+00 9.26939e-01 7.46975e-01
45 1.30955e+01 0.00000e+00 1.62634e-03 8.43058e-01
46 1.57442e+01 0.00000e+00 7.11158e-07 2.43746e+00
47 1.89287e+01 0.00000e+00 6.49680e-11 1.50509e+00
48 2.27573e+01 0.00000e+00 8.32408e-16 9.01762e-01
49 2.73603e+01 0.00000e+00 1.00856e-21 5.38182e-01
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radiation energy density in erg/(cm3 − keV) as a function of frequency in keV. The
energy density has two maxima. The first, centered around 0.1 keV, is a Planckian
formed from emission of the local material at Tc = 0.03 keV. The opacity of the
material is very high at frequencies less than 0.5 keV, so almost no photons from the
source get to the fiducial point in this range. The second maxima, centered around
1.0 keV, is formed by photons from the source that have passed through the outer
material. The Planckian source, at Ts = .3 keV, radiates at a peak frequency of
approximately 1 keV. Since the opacity of the material is low for frequencies equal
to or greater than 1 keV, higher frequency photons from the source can get to the
fiducial point and contribute to the energy density in some of the higher frequency
groups.

Fig. 6. The IMC results for the Graziani prompt spectrum problem and the analytic
answer, Eqs. 15 and 19. Radiation energy density is plotted vs. frequency. Values
of energy density at frequencies below .5 keV are from the thermal emission at Tc

by the local matter. Values of energy density at frequencies above .5 keV are from
higher frequency photons from the source, which have not been fully absorbed. These
photons have frequencies at which the brominated plastic opacity has a low opacity
and hence a large mean free path. (See Fig. 4.) The energy density is in units of
erg/cm3 − keV and the frequency is in units of keV.

The IMC simulation used 8 × 105 particles and took about 2 minutes on 4
Pentium processors. The simulation answers are in good agreement with the analytic
results. Some statistical noise is evident in groups with less energy in them. This is
expected, since regions with lower energy density are represented by fewer particles.
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5 A slab version of Graziani’s prompt spectrum test

problem

The analytic answer to a slab version of Graziani’s test problem can be derived
from Eqs. 18 and 19. Define d ≡ r − R, the distance of the fiducial point from the
embedded sphere. Then let both r and R grow without bound, while keeping d fixed.
In this limit, the embedded sphere becomes a plane source. The solutions become
functions of d:

er(r, t, ν) = Bν(Tc) + Bν(Ts) − Bν(Tc)Fν(d, t) (21)

with Fν(d, t) given by
Fν(r, t) = 0, ct < d (22)

Fν(d, t) =
1

2

{

e−σνd − d

ct
e−σνct − σνd [E1(σνd) − E1(σνct)]

}

(23)

for d < ct < ∞
Since there is always some part of the source plane that is not in causal contact

with the fiducial point, there is no steady-state solution for the slab case.
The slab version of Graziani’s test problem was simulated using the same mate-

rial as the spherical version. The same opacities and group structure were used. A
face temperature source with a temperature of Ts is imposed at z = 0. The outer
boundary of the problem had a face temperature source with a temperature of Tc

imposed on it to avoid edge effects.
The mesh used had 11 zones spanning [0.0, z = 2.3157895×10−2 cm]. The center

of the 10th zone is the fiducial point location at z = 0.02 cm, i.e., d = 0.02 cm. The
zones had extent 1 cm in the ignorable x and y directions.

As in the spherical case, the simulation was run to a time of 1.4× 10−12 s using
a time step of ∆t = 10−13 s, and the answer generated by the IMC simulation
corresponds to a time of 1.35 × 10−12 s.

The results of the simulation, the analytic answer, and the opacity for the slab
case are given for each group in Table 2.

The results of the IMC simulation of the slab problem and the analytic answer,
are shown in Fig. 7. (This is a plot of column 3 and column 4 vs. column 2 of
Table 2.) This plot shows the radiation energy density in erg/(cm3-keV) as a function
of frequency in keV. As in the sphere case, the energy density has two maxima. The
height of the maxima centered near 1 keV is higher in the sphere case, because the
plane source emits many more photons toward the fiducial point than a spherical
source at the same distance.

Because the source is stronger in the slab case, the IMC simulation used more
particles and took slightly longer. The simulation used 2 × 106 particles and took
about 3 minutes on 4 Pentium processors. As in the sphere case, the simulation
answers are in good agreement with the analytic results, and some statistical noise
is evident in groups with lower energy density.
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Table 2. Results of the IMC simulation of the Graziani slab prompt spectrum
problem. er is the result of an IMC simulation, and analytic er results from Eqs. 21
and 23, with d = 0.02 cm, t = 1.35×10−12 s, and σν as given in column 5. The value
of ν for each group is the rms value of the group bounds, which were logarithmically
distributed between 3.0 × 10−3 keV and 30.0 keV. The energy density is in units of
erg/(cm3 − keV) and the opacity is in units of 1/cm.

group ν er analytic er σ

0 3.28943e-03 0.00000e+00 6.56128e+06 9.16000e+04
1 3.95477e-03 0.00000e+00 9.37744e+06 9.06781e+04
2 4.75468e-03 6.08837e+06 1.33706e+07 6.08939e+04
3 5.71638e-03 2.21914e+07 1.90091e+07 4.08607e+04
4 6.87260e-03 0.00000e+00 2.69304e+07 2.72149e+04
5 8.26269e-03 3.39862e+07 3.79893e+07 1.86425e+04
6 9.93393e-03 9.77224e+07 5.33093e+07 1.24389e+04
7 1.19432e-02 5.35097e+07 7.43291e+07 8.19288e+03
8 1.43589e-02 1.28744e+08 1.02827e+08 5.79710e+03
9 1.72632e-02 9.27517e+07 1.40887e+08 5.14390e+03
10 2.07549e-02 1.57907e+08 1.90765e+08 5.20350e+03
11 2.49529e-02 2.83336e+08 2.54559e+08 8.69569e+03
12 3.00000e-02 3.82734e+08 3.33604e+08 6.67314e+03
13 3.60679e-02 5.08110e+08 4.27461e+08 4.15912e+03
14 4.33632e-02 4.12233e+08 5.32466e+08 2.62038e+03
15 5.21340e-02 4.44628e+08 6.40012e+08 1.64328e+03
16 6.26789e-02 9.17212e+08 7.35205e+08 1.01613e+03
17 7.53566e-02 8.23536e+08 7.97306e+08 6.19069e+02
18 9.05986e-02 6.79309e+08 8.05117e+08 3.75748e+02
19 1.08923e-01 9.75612e+08 7.49915e+08 2.97349e+02
20 1.30955e-01 8.02509e+08 6.06784e+08 8.21172e+02
21 1.57442e-01 3.78322e+08 4.32675e+08 4.01655e+03
22 1.89287e-01 2.77227e+08 2.59951e+08 4.54828e+03
23 2.27573e-01 1.14425e+08 1.26955e+08 3.50487e+03
24 2.73603e-01 5.79367e+07 4.83345e+07 3.02359e+03
25 3.28943e-01 1.37617e+07 1.36588e+07 4.34203e+03
26 3.95477e-01 2.32763e+06 2.70428e+06 2.98594e+03
27 4.75468e-01 0.00000e+00 3.50392e+05 1.55364e+03
28 5.71638e-01 0.00000e+00 2.75095e+04 9.42213e+02
29 6.87260e-01 0.00000e+00 2.85002e+05 5.76390e+02
30 8.26269e-01 3.22636e+07 3.91809e+07 3.52954e+02
31 9.93393e-01 9.34736e+08 9.85459e+08 2.09882e+02
32 1.19432e+00 6.30907e+09 6.33419e+09 1.26546e+02
33 1.43589e+00 1.64366e+10 1.64600e+10 7.80087e+01
34 1.72632e+00 6.11433e+09 6.22834e+09 9.97421e+01
35 2.07549e+00 9.91868e+08 1.00872e+09 1.48848e+02
36 2.49529e+00 2.36965e+09 2.28836e+09 8.22907e+01
37 3.00000e+00 1.77814e+09 1.80809e+09 4.86915e+01
38 3.60679e+00 7.47867e+08 7.26508e+08 2.91258e+01
39 4.33632e+00 1.37272e+08 1.64067e+08 1.68133e+01
40 5.21340e+00 1.77538e+07 2.01749e+07 9.92194e+00
41 6.26789e+00 7.71867e+05 1.34876e+06 5.18722e+00
42 7.53566e+00 0.00000e+00 4.44994e+04 2.24699e+00
43 9.05986e+00 0.00000e+00 6.33976e+02 1.29604e+00
44 1.08923e+01 0.00000e+00 3.49212e+00 7.46975e-01
45 1.30955e+01 0.00000e+00 6.12484e-03 8.43058e-01
46 1.57442e+01 0.00000e+00 2.66266e-06 2.43746e+00
47 1.89287e+01 0.00000e+00 2.44078e-10 1.50509e+00
48 2.27573e+01 0.00000e+00 3.13420e-15 9.01762e-01
49 2.73603e+01 0.00000e+00 3.80253e-21 5.38182e-01
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Fig. 7. The results for the slab version of the Graziani prompt spectrum problem
and the analytic answer, Eqs. 21 and 23. Radiation energy density is plotted vs.
frequency. Values of energy density at frequencies below .5 keV are from the thermal
emission at Tc by the local matter. Values of energy density at frequencies above .5
keV are from higher frequency photons from the source, which have not been fully
absorbed. These photons have frequencies at which the brominated plastic opacity
has a small opacity and hence a large mean free path. (See Fig. 4.) The energy
density is in units of erg/cm3 − keV and the frequency is in units of keV.
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